

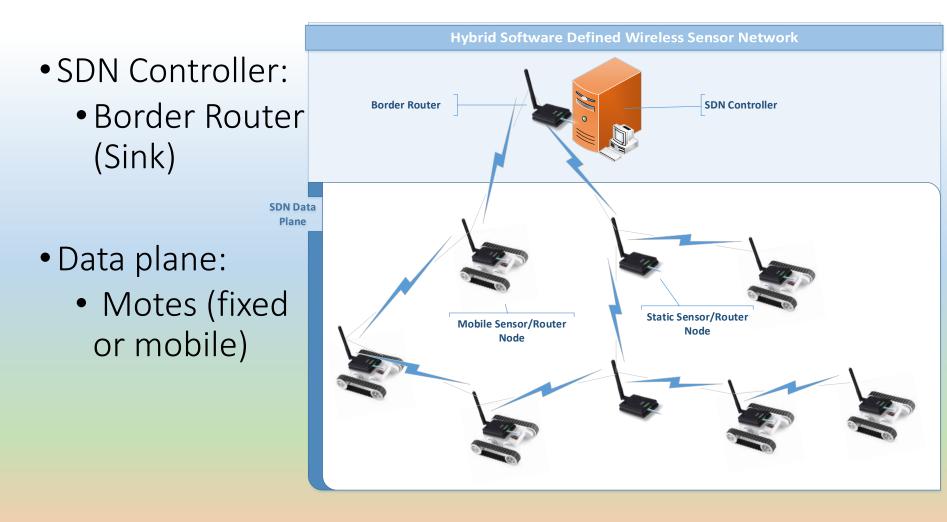
Software-Defined Wireless Sensor Networks

Softwarized & Wireless Networks Research Group University of Macedonia Lefteris Mamatas, Tryfon Theodorou, George Violettas

Discussion: WSNs fit naturally the SDN paradigm (1)

- •WSNs architecture relies on one or more centralized base station/sink to task the sensor network and to gather the data
- It naturally maps to the SDN model:
 - the sink could become the centralized controller
 - the motes / sensors could become data plane elements forwarding and processing data along the way

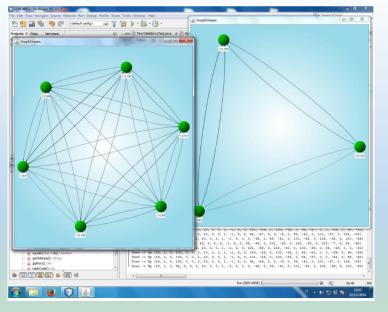
Discussion: WSNs fit naturally the SDN paradigm (2)


- Motes offload network control tasks to the controller:
 - routing, topology management
 - simplifying their architecture and <u>improving their</u> <u>energy</u> efficiency
- •The controller armed with a global network view can offer **efficient resource** allocation and **optimized management** through:
 - centrally controlled topology control, scheduling, routing, network coverage and connectivity planning.

Software Defined Wireless Sensor Network

WSN Software-Defined Architectures

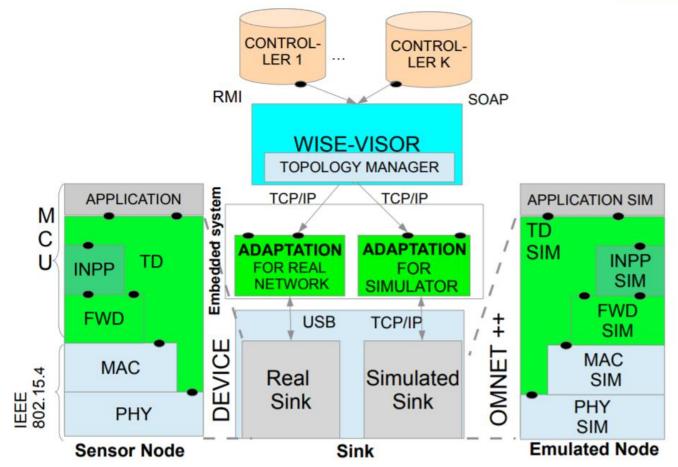
- SDN-WISE
- CORAL-SDN
- SDWN
- Smart
- Spooled
- Flow Sensor
- Sensor OpenFlow
- Multi-task SDSN
- Software Sensor



is **S**oftware **D**efined **N**etworking solution for **WI**reless **SE**nsor Networks.

The aim of SDNWISE is to simplify the management of the network, the development of novel applications, and the experimentation of new networking solutions in WSNs.

http://sdn-wise.dieei.unict.it/



SDN-WISE Architecture

http://sdn-wise.dieei.unict.it

SDN-WISE Special Characteristics

Statefulness

- OpenFlow is stateless but SDN-WISE is stateful: a buffer of memory is reserved for state information
- Rules can state info to classify packets in flows
- Actions can modify state info

Why Statefulness?

To reduce the number of interactions with the Controller using local policies

CORAL

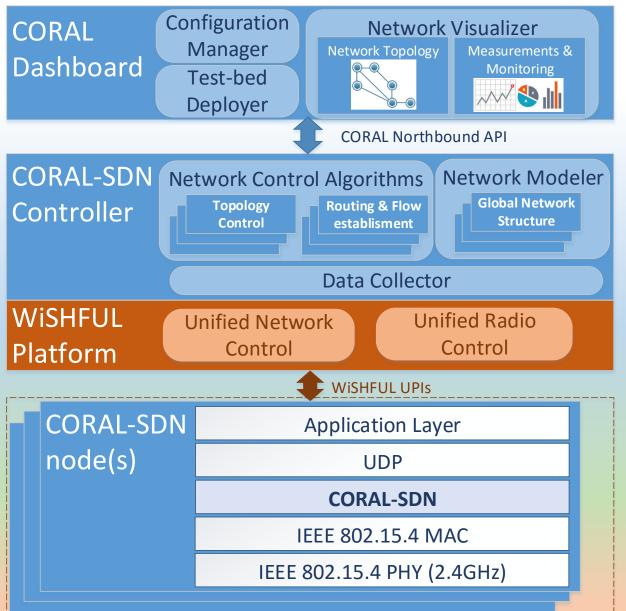
Cross-Layer Control of Data Flows

Experimentation of SDN-inspired capabilities aiming at improved QoE of users and QoS of applications over Internet of Things (IoT) devices

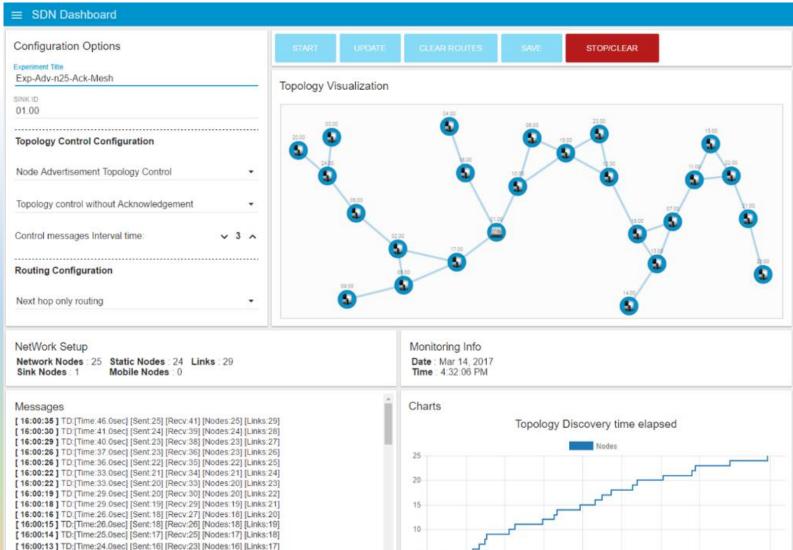
WiSHFUL enabling technologies for CORAL:

- radio- and network-control abstractions
- novel experimentation facilities
- heterogeneous wireless environments CORAL novel features:
- bespoke protocol configurations per node
- efficient SDN-inspired communication strategies
 novel heterogeneity handling

Publications:


- [•] "Intelligent Network Control for the Internet of Things INTER-IOT", eWINE Grand Challenge 1st runner up award 2017
- T. Theodorou, L. Mamatas, "Software Defined Topology Control Strategies for the Internet of Things", IEEE Conference on Network Function Virtualization and Software Defined Networks NFVSDN 2017, Berlin Germany, November 2017.
- T. Theodorou, L. Mamatas, "CORAL-SDN: A Software-Defined Networking Solution for the Internet of Things", IEEE Conference on Network Function Virtualization and Software Defined Networks NFVSDN 2017, Berlin Germany, November 2017.

CORAL-SDN Architecture


[16:00:11] TD:[Time:22.0sec] [Sent:15] [Recv:20] [Nodes:15] [Links:16] [16:00:08] TD:[Time:19.0sec] [Sent:14] [Recv:19] [Nodes:14] [Links:15] [16:00:08] TD:[Time:19.0sec] [Sent:13] [Recv:18] [Nodes:13] [Links:14]

[16:00:06] TD:[Time:17.0sec] [Sent:12] [Recv:17] [Nodes:12] [Links:13]

CORAL-SDN Framework Interface

15:59:52

11

16:00:36

16:00:27

15:59:57 16:00:02 16:00:07 16:00:12 16:00:17 16:00:22

CORAL-SDN:

- •uses intelligent centralized control mechanisms to adjust dynamically the protocol functionalities
- supports elasticity to the challenging requirements of the WSNs
- maintains a scalable architecture
- exhibits improved network management and operation in terms of performance and resource utilization

CORAL-SDN Aims

- improves WSN management, control, and operation in terms of performance and resource utilization
- enhances network control intelligence through centralized control and dynamic protocol adjustments
- enables elastic network operation utilizing cross-layer information
- supports scalable evolution through a modular extensible architecture

CORAL-SDN Hands-on 1-3 Demonstration

The demo can operate in two IoT WSN real test-beds:

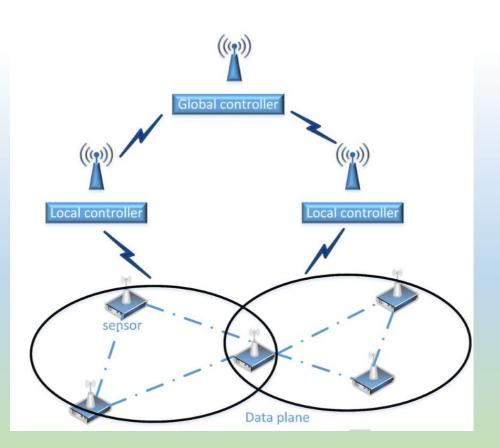
- a) the IMEC w-iLab.2 (http://wilab2.ilabt.iminds.be) test-bed based in Ghent, Brussels, equipped with forty (40) RM090 motes
- b) the SWN (https://www.emulab.swn.uom.gr/) test-bed based in the University of Macedonia, Thessaloniki, Greece, equipped with fifteen (15) Zolertia RE-Mote sensor motes

For demonstrating very large scale scenarios (>50 nodes) the system collaborates with the Cooja WSN emulator

- Targets efficient duty cycling (turning off the radio not in service)
- Data-aggregation
- Flexible routing rules for cross layer optimization through a decoupled architecture.
- The controller operates at the sink
- In motes, a forwarding layer on top of the physical and MAC layers, which consists of the flow tables
- The sink is similar to a regular sensor with an embedded system that serves as the controller.
- The layers include an:
 - adaptation layer (for message formatting),
 - a virtualization layer (slices the network in terms of the topology, which is also formed by the same layer),
 - a controller (creates flow table rules based on the current topological knowledge),
 - an application layer.

University of Macedonia

Proposes a controller architecture for better WSN management

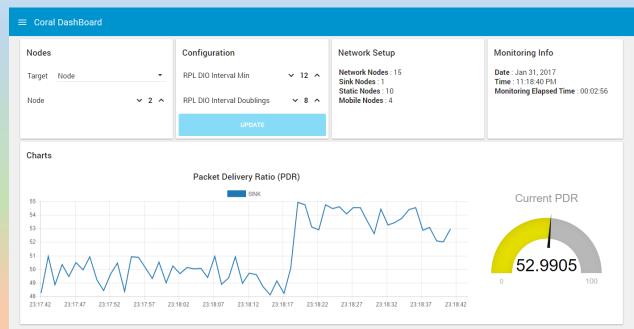

Smart

- The controller resides on the sink and comprises a five layer stack
- The lower three layers are the physical, MAC, and NOS layers
- The next layer up is called the middleware where the controller sits.
- Centralized architecture, improves routing, QoS, mobility management, and localization leading an energy efficient.

- Uses hierarchical controllers to reduce the communication overhead relative to a centralized controller architecture
- Local controllers manage a part of the network and inform the global controller about the topological and other state changes

Spooled

- Hierarchical controller organization to cluster the sensors according to their gathered data type or context
- Sensors from the same context form a cluster even if they are physically distant
- Each such cluster has its own controller or cluster head that performs the local processing for the cluster
- Local controllers form a logical controller for the entire network


Softwarized RPL adaptation

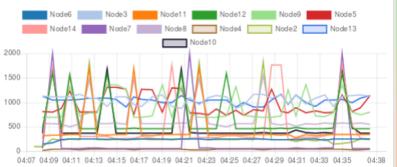
Softwarized Enhancements for existing algorithms like RPL:

- RPL network map regeneration and neighbor discovery are not functioning well for mobile IoT
- Those parameters (Imin, Idouble) adaptations can significantly improve the network performance

InfoCom 2017


G.Violettas, T.Theodorou, S. Petridou, A. Tsioukas, L. Mamatas, "An Experimentation Facility Enabling Flexible Network Control for the Internet of Things," in 2017 *IEEE Conference on Computer Communications (INFOCOM)*, Atlanta, 2017

Softwarised RPL Performance



Softwarized & Wireless Networks

Research Group

Softwarized Adaptable BPR Protocol

• Balancing traffic load with the Adaptable Back-Pressure Routing Protocol

ode-RED: dssb5.wilab2 × < C O dssb5.wilab2.ilabt.iminds.be:4000/ui/#/4					୦ – ପ ତ୍ୟ
BCP - Dashboard					
Nodes	Configuration		Network Setup	Monitoring Information	
Target Node 🔻	Weights	V 0 A UPDA	те	Date : Sep 13, 2017 Time : 6:14:47 PM	
Node 🗸 🖌 🗙	Queue Limits	✓ 30 ∧ UPDA	TE Waiting for Data	a	
	Data Packet send freq (sec)	V 1 A UPDA	те		
Charts					
Packets in Queues					
20					
15					
10					
5					
0 N47.00	N44.00 N45.00	N48.00	N46.00 N49.00	N51.00 N50.00	N52.00
					6:14 ш

References

- I. T. Haque and N. Abu-Ghazaleh, "Wireless Software Defined Networking: A Survey and Taxonomy," *IEEE Commun. Surv. Tutor.*, vol. 18, no. 4, pp. 2713–2737, 2016.
- L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, "SDN-WISE: Design, prototyping and experimentation of a stateful SDN solution for WIreless SEnsor networks," in 2015 IEEE Conference on Computer Communications (INFOCOM), 2015, pp. 513–521.
- B. T. de Oliveira and C. B. Margi, "Distributed control plane architecture for software-defined Wireless Sensor Networks," in 2016 IEEE Int. Symposium on Consumer Electronics (ISCE), 2016, pp. 85-86.
- T. Theodorou and L. Mamatas, "Software Defined Topology Control Strategies for the Internet of Things," in 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFVSDN), 2017.
- G. Violettas, T. Theodorou, S. Petridou, A. Tsioukas, and L. Mamatas, "An Experimentation Facility Enabling Flexible Network Control for the Internet of Things," in 2017 IEEE Conference on Computer Communications (INFOCOM), 2017.
- T. Theodorou, L. Mamatas, "Software Defined Topology Control Strategies for the Internet of Things", IEEE Conference on Network Function Virtualization and Software Defined Networks - NFVSDN 2017, Berlin Germany, November 2017.
- T. Theodorou, L. Mamatas, "CORAL-SDN: A Software-Defined Networking Solution for the Internet of Things", IEEE Conference on Network Function Virtualization and Software Defined Networks - NFVSDN 2017, Berlin Germany, November 2017.

References

- W. Ye, J. Heidemann, and D. Estrin, "An energy-efficient MAC protocol for wireless sensor networks," in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), vol. 3. New York, NY, USA, 2002, pp. 1567–1576.
- S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, "Software defined wireless networks: Unbridling SDNs," in Proc. Eur. Workshop Softw. Defined Netw., Darmstadt, Germany, Oct. 2012, pp. 1–6.
- A. D. Gante, M. Aslan, and A. Matrawy, "Smart wireless sensor network management based on softwaredefined networking," in Proc. 27th Bienn. Symp. Commun., Kingston, ON, Canada, Jun. 2014, pp. 71–75.
- T. Luo, H.-P. Tan, and T. Q. S. Quek, "Sensor OpenFlow: Enabling software-defined wireless sensor networks," IEEE Commun. Lett., vol. 16, no. 11, pp. 1896–1899, Nov. 2012.
- D. Pfammatter, D. Giustiniano, and V. Lenders, "A software-defined sensor architecture for large-scale wideband spectrum monitoring," in Proc. 14th Int. Conf. Inf. Process. Sensor Netw. (IPSN), Seattle, WA, USA, 2015, pp. 71–82.
- D. Zeng et al., "Energy minimization in multi-task softwaredefined sensor networks," IEEE Trans. Comput., vol. 64, no. 11, pp. 3128–3139, Nov. 2015.
- B. Oliveira and C. Margi, Spotled: A Hierarchical Control Plane Architecture for Software Defined Wireless Sensor Networks, University of São Paulo, São Paulo, Brazil, 2014.
- R. Rahmani, H. Rahman, and T. Kanter, "On performance of logicalclustering of flow-sensors," Int. J. Comput. Sci. Issues, vol. 10, no. 5, p. 1, Sep. 2013.